
WinSock Networking VBX v1.08alpha HELP
When you add this VBX to your project, three new custom controls will be added to your
Toolbox. You can select the appropriate control by clicking the corresponding button.

See About this project for more general information
See the Changes that have been made to this version.
See the public domain Copyright information for distribution availability.
See the Common Problems information for general help on other issues.

The toolbox buttons available through WSANET.VBX are:

 NetClient control NetServer control Ini control

Domain Name System
Fully Qualified Domain Name

Berkley Software Distribution

First In First Out

 About the WinSock Networking VBX Project

About the NetClient Control
This control was written between July and December of 1993 as a side project to other
Windows Sockets applications. Somehow, between 3 harddrive crashes, this project
managed to survive to the stage you see it in today. NetClient's origional purpose was to
fill the gap between the many Unix networking services and the moderate few WinSock
applications.

About the Author
(As of October of 1993)(In an attempt at modest second person tone)

Ian Blenke is currently a full time student teaching himself the wonders of computing. He
currently takes part in Windows Sockets discussions through Internet mail, and tries to
read what he can through Usenet news. He has migrated from his developing stage on the
Commodore 64 throughout high school as a "demo" programmer to the more advanced
Unix and Windows paradigms in todays workplace. He currently has currently finished his
initial 2 years at a local community college, and hopes to continue his education with
either the Florida Institute of Technology (FIT) or the University of Central Florida (UCF) in
their Software Engineering programs.

Ian currently works as a COOP for Harris Corporation Corporate Headquarters in
Melbourne, Florida. As a COOP he is kept busy putting PCs together, installing software,
and occationally writing miscellaneous "hacks" to do such things as monitor the network
with batch files and VB.   

Ian programs during his spare evenings at home. Since his college studies have began, he
has devoted his personal software to the public domain. In the future he hopes to continue
writing network and GUI applications for whatever OS has his eye at the time. As time
progresses, he hopes to continue to contribute to the new "Electronic Superhighway" (TM
Gore) (I.E. Internet) as it expands into its full glory.

E-Mail addresses:
iblenke@ic1d.harris.com
iblenke@rhino.ess.harris.com

Thank you's and Handshakes
This section is devoted to you. Whenever I receive a good idea, or a successful nudge to
implement something new or fix an outstanding bug, I will try and remember and put your
name in here. If I don't, simply remind me, and I will gladly put you in (because I realize
that I have a very short memory ;).

For the idea of a WinSock control at all, I would like to thank G. Michael Carr, a co-
worker. If it weren't for his daily trips to bug me about finishing it, you would likely have
never read this!

For the idea of RSH/LPD type restricted port clients, I would like to thank Dan
Tenenbaum at Microsoft. This was on my agenda - I just didn't feel like implementing it,
but his persistance gave me a reason to implement the LocalPort property. He also
aided the project by creating a VC++ makefile, reporting a whole slew of warnings
from the VC++ compiler (which, hopefully, have been fixed), and noting that WEP was
unnecessarily exported in the WSNETC.DEF file (a holdover from an earlier revision).

For relaying constant feedback as to the status of his Sequoia program, I would like to
thank Jason Levine at Columbia University. Jason has spent an incredible amount of
time getting his Sequoia program to work with WSMTPD and the WSANET VBX. I have
to thank you for the amount of time you've put into this wonderful mail program.

For testing and reporting bugs at the WinSock level over Peter Tattam's WinSock, I
would like to thank Mike Rogers at the University of Iowa. His comments relate both to
the real world problems that might occur with the NetClient control, and to the
problems that users will face with my VB3.0 only examples (which HAVE been rewritten
for VB2.0 standard).

For testing the Block/SendBlock/RecvBlock properties with his Gopher client, I would
like to thank Rod Potter from York University (Computing & Communications Services).
By looking at his CNGopher source code, I have corrected some of the online help
documentation by seeing what everyone expects the VBX to do.

For suggesting the Host property (for the heck of it), and for giving me ideas for UDP,
OOB, and Raw socket support in the future, I would like to thank Tom Hogard from the
Air Force Logistics Command.   

Common Problems with WSANET.VBX (FAQ)
Q. Whenever I use WSANET.VBX in my project, my machine slows to a crawl!
A. This problem is due to the fact that you are using the debugging version of the VBX. In

order to remedy this problem, you MUST run DBWIN.EXE or OX.SYS in order to install
the debugging "hook" that Windows keeps looking for during each
OutputDebugString() call. The other solution is to use RELEASE.VBX by renaming it to
WSANET.VBX - it uses no such debugging calls - and it will definitely run faster. Due to
the massive output of the debugging version, you might consider using the
RELEASE.VBX version (by copying it to your SYSTEM directory as WSANET.VBX) until
you stumble upon a bug.

Q. Whenever I try to send a large file, I get wierd results! What gives?
A. This is a side-effect of asyncronous programming. In order to send more data than can

be held in your WINSOCK.DLL's buffers, and NetClient's send buffers, you MUST either
poll SendCount or use the SendThreshold/OnSend() pair. See the WFingerD or
VBSMTPD example of how to do exactly this.

Q. Your example programs are written explicitly for VB2.0 and newer! What about VB1.0
users?

A. Unfortunately, the author does not have VB1.0 or VC++ (MFC 2.0) to test out or write
sample applications. He has, however, tried to make the text-saved VB2.0 examples
generic enough for VB1.0 use. You merely have to load an example form into a text
editor (like Notepad) and use the Copy function - then Paste what you copied into a
VB1.0 form.

Q. What are your plans for this VBX?
A. WSANET.VBX is intended to be used by Public Domain application authors as a

FREEWARE tool. This entire project is merely a pet project of mine to get TCP/IP
applications quickly to the end-users - as FREEWARE. The Windows Socket v1.1
standard was a feat in itself, but the only real world applications that I have seen on
Internet are Shareware packages and commercial demos. This tool will make EVERY
client/server application available on Unix to be written for Windows 3.x and newer (as
long as a WINSOCK.DLL thunk is included). The main reason for this control, trying not
to sound ego-centered, was to show that I have some potential as a future Software
Engineer.

 What is a Socket?
The concept of Sockets is derived from the network programming model on BSD Unix. A
socket was origionally intended as a way for two machines to talk across the network
without the hassle of packet derived communication.

A Socket is (at least on NT and Unix) a unique "handle" that can be used on the system to
reference the connection to another host. A Socket has 2 sides to it: Local and Remote. The
Local side uses your PC's TCP/IP address (actually INADDR_ANY for WinSock calls) and the
LocalPort property to define the application's side of the connection. By setting HostAddr
(I.P.) or HostName (DNS) and the RemotePort to a remote host's TCP address, you tell the
NetClient control where to connect to.

By using this control, the NetClient control itself becomes the Socket. You can set the
LocalPort and RemotePort properties to allow the control to bind() both sides of a real
WinSock socket appropriately. When you set the HostAddr or HostName property, you are
telling the control that it is to try and connect to that address. Once you set Connect to True,
you allow the control to allocate a real WinSock socket to attempt a connection to the
remote host.    If you use the Index property, you can have multiple Windows Sockets client
connections active simultaneously. Each control in the control array receives its own
WinSock "environment" that you can use to communicate across the network.

WinSock Errors

The following is a list of possible error codes returned by the NetClient control, along with their
explanations. The error numbers are consistently set across all Windows Sockets-compliant
implementations.

Windows Sockets code Berkeley equivalent Error Interpretation
WSAEINTR EINTR 10004 As in standard C
WSAEBADF EBADF 10009 As in standard C
WSEACCES EACCES 10013 As in standard C
WSAEFAULT EFAULT 10014 As in standard C
WSAEINVAL EINVAL 10022 As in standard C
WSAEMFILE EMFILE 10024 As in standard C
WSAEWOULDBLOCK EWOULDBLOCK 10035 As in BSD
WSAEINPROGRESS EINPROGRESS 10036 This error is returned if anyWindows Sockets API

function is called while a blocking function is in
progress.

WSAEALREADY EALREADY 10037 As in BSD
WSAENOTSOCK ENOTSOCK 10038 As in BSD
WSAEDESTADDRREQ EDESTADDRREQ 10039 As in BSD
WSAEMSGSIZE EMSGSIZE 10040 As in BSD
WSAEPROTOTYPE EPROTOTYPE 10041 As in BSD
WSAENOPROTOOPT ENOPROTOOPT 10042 As in BSD
WSAEPROTONOSUPPORT EPROTONOSUPPORT 10043 As in BSD
WSAESOCKTNOSUPPORT ESOCKTNOSUPPORT 10044 As in BSD
WSAEOPNOTSUPP EOPNOTSUPP 10045 As in BSD
WSAEPFNOSUPPORT EPFNOSUPPORT 10046 As in BSD
WSAEAFNOSUPPORT EAFNOSUPPORT 10047 As in BSD
WSAEADDRINUSE EADDRINUSE 10048 As in BSD
WSAEADDRNOTAVAIL EADDRNOTAVAIL 10049 As in BSD
WSAENETDOWN ENETDOWN 10050 As in BSD. This error may be reported at any

time if the Windows Sockets implementation
detects an underlying failure.

WSAENETUNREACH ENETUNREACH 10051 As in BSD
WSAENETRESET ENETRESET 10052 As in BSD
WSAECONNABORTED ECONNABORTED 10053 As in BSD
WSAECONNRESET ECONNRESET 10054 As in BSD
WSAENOBUFS ENOBUFS 10055 As in BSD
WSAEISCONN EISCONN 10056 As in BSD
WSAENOTCONN ENOTCONN 10057 As in BSD
WSAESHUTDOWN ESHUTDOWN 10058 As in BSD
WSAETOOMANYREFS ETOOMANYREFS 10059 As in BSD
WSAETIMEDOUT ETIMEDOUT 10060 As in BSD
WSAECONNREFUSED ECONNREFUSED 10061 As in BSD
WSAELOOP ELOOP 10062 As in BSD
WSAENAMETOOLONG ENAMETOOLONG 10063 As in BSD
WSAEHOSTDOWN EHOSTDOWN 10064 As in BSD
WSAEHOSTUNREACH EHOSTUNREACH 10065 As in BSD
WSASYSNOTREADY 10091 Indicates that the network subsystem is unusable.
WSAVERNOTSUPPORTED 10092 Indicates that the Windows Sockets

DLL cannot support this app.
WSANOTINITIALISED 10093 Indicates that a successful WSAStartup() has not

yet been performed.
WSAHOST_NOT_FOUND HOST_NOT_FOUND 11001 As in BSD.
WSATRY_AGAIN TRY_AGAIN 11002 As in BSD
WSANO_RECOVERY NO_RECOVERY 11003 As in BSD
WSANO_DATA NO_DATA 11004 As in BSD

The first set of definitions is present to resolve contentions between standard C error codes which may be
defined inconsistently between various C compilers.

The second set of definitions provides Windows Sockets versions of regular Berkeley Sockets error
codes.

The third set of definitions consists of extended Windows Sockets-specific error codes.

The fourth set of errors are returned by Windows Sockets gethostbyXXXX() calls, and correspond to the
errors which in Berkeley software would be returned in the h_errno variable. They correspond to various
failures which may be returned by the Domain Name Service. If the Windows Sockets implementation
does not use the DNS, it will use the most appropriate code. In general, a Windows Sockets application
should interpret WSAHOST_NOT_FOUND and WSANO_DATA as indicating that the key (name,
address, etc.) was not found,, while WSATRY_AGAIN and WSANO_RECOVERY suggest that the name
service itself is non-operational.

The error numbers are derived from the winsock.h header file, and are based on the fact that Windows
Sockets error numbers are computed by adding 10000 to the "normal" Berkeley error number.

Note that this table does not include all of the error codes defined in winsock.h. This is because it
includes only errors which might reasonably be returned by a Windows Sockets implementation:
winsock.h, on the other hand, includes a full set of BSD definitions to ensure compatibility with ported
software.

This Error section was "stolen" from the WinSock.HLP source file (winsockx.rtf, part of the Microdyne.com
archives). You can get the actual WinSock.HLP file from a number of various FTP sites, along with
the .H/.DEF/.LIB files and sample C sources.

Copyright
In this document, VBX refers to the actual Visual Basic control distributed with and based
on this WSANET project, and author refers to Ian Blenke. The author cannot be held
responsible for damages, express or implied, for the use of this software. No commercial
use can be made of this product without the consent of the author. No profit of any kind
can be made on the sale or distribution of this program. If you wish to distribute this
program with other samples of WinSock programming, you must first contact the author
so that he can keep accurate records of its usage; no charge may be made for this
project's availability other than the cost of the physical medium used to store it on and any
processing costs. If you write any programs based on this source code, including parts of
this source code, or in some way derived from this source code, you may not sell them for
any profit without the written consent of the author. If you incorporate this VBX into a free
public domain program, all the author requires is a notification that "The WinSock VBX
control was written by Ian Blenke" and some form of notification that his name was used
in the public domain software distribution. No profit of any kind, shareware/commercial or
otherwise, may be made for software based on this VBX without the written consent of the
author. This does not represent a contract on the part of the author. If any issues cannot
clearly be resolved by reading this text, immediately contact the author.

The VBX control distributed with this project must be distributed with your programs free
of charge. You cannot charge money for any program based on the VBX without the
written consent of the author.

Notes:

If you have any bug reports, by all means, tell me! I would be glad to help keep this code
up to date.

The source of the project is included in the open spirit under which most Unix source is
distributed: if you modify it in some unique way, PLEASE change the LIBRARY name in
WSANET.DEF to match the filename of the finished VBX. This is to make sure that other
WSANET applications continue to work as their designers intended. If you make any
modifications, please contact the author    - your "hacks" could likely be incorporated into
the next release of WSANET.VBX and    made available to other developers.

I don't like such agreements. But in today's world of lawyers and lawbreakers, I have little
other choice. Enjoy!

Changes
v1.03alpha to v1.04alpha

Online context sensitive help is stable and complete (for this version)

v1.04alpha to v1.05alpha
Socket semantics have changed (although the ability to set it is not
            yet technically implemented).
New Toolbox BMP has been designed:

New (extended from SOCKET.ICO)

Old (drawn by author, no artistic value ;)
HLP updated: Changes topic added.
The LocalPort property was broken previous to version 1.05alpha. Setting it would set the

RemotePort property.
WSNETC.C and NETC.C now use the DEBUG_BUILD flag to mark debug/release build

versions (instead of keeping two copies of source).
WSNETC.C cleaned up. Debugging information clearer now.
NETC.C cleaned up. Debugging information clearer now.
NET.C - Added "netConnect()" procedure to aid in the setting of the Socket property
All sources cleaned up for compilation by VC++ (uncomment USE_VCPP in WSNetC.H)
Fixed TimeOut bug. Previous versions will ALWAYS delay for just 1 second.

v1.05alpha to v1.06alpha
Added Version and Debug properties.
Added HostAliasCount/HostAliasList() and HostAddressCount/HostAddressList() properties
Changed the HostAddr/HostName property code to avoid VB calls where possible.
Added Ini Control - 6 properties, no events
Changed the names of EVERYTHING
Moved everything around
Caused general havok within the code:

Init.C is renamed to WSANet.C, and 2 procedures from WSNetC.C were added.
WSNetC.C is copied over to NetClnt.C
Ini.C/Ini.H is added (to support the Ini control)
WSNetC.H becomes two files: NetClnt.H and WSANet.H
Functions added to Net.C: GetAtomHsz(), SetAtom()

The project name has changed from WSNETC.VBX to WSANET.VBX
Reason for changes:

NetClnt.C/NetClnt.H now hold all of the NetClient control code
Ini.C/Ini.H now hold all of the Ini control code
WSANet.C/WSANet.H is the "glue" for the project.
Version.H holds all version information
WSANet.RC/WSANet.DEF hold the resources and definitions

Caused the programmer many headaches as he renamed everything ;)
Fixed WFinger/WSMTPC/VBTest to run under VB2.0 standard.
Added fully commented WFinger example code to the HLP file.

v1.06alpha to v1.07alpha
Added the NetServer control.
Fixed a nasty problem with v1.06alpha's use of ATOMs to store strings: all strings are now

stored internally as Visual Basic strings (type HLSTR).
Changed the semantics of setting the Socket on the NetClient control so that NetServer's

OnAccept(Socket, ...) could be handed over.
Fixed a potential problem with the FD_CLOSE message handler: it didn't "zero out" the

Socket when it closed!

Dropped the VBTest client due to it's obvious inadequacies (and pointlessness)
Wrote WinWhois client.
Wrote WFingerD server.
Modified all VB3.0 examples to use a "standard" GUI appearance.
Shuffled the HLP file around. Topics have changed to include the control name along with

the property context string.

v1.07alpha to v1.08alpha
Fixed a problem that caused WSAE_NOCONN errors.
Fixed a event firing problem.
Fixed the connection semantics
Added window position "memory" to VB3.0 samples
Wrote VB-SMTPD as a multi-connection state server which uses dynamic creation and

destruction of NetClient controls.
Removed example code from the HLP file: the SAMPLES directory holds all source code,

why keep 2 copies up to date?
Setting Listen to LISTEN_DONTREUSE (2) will not open a server socket as

SO_REUSEADDR.
Added the Host property.
Fixed a Line property bug. Not only was it poorly coded before, I wonder what I was

thinking at the time.

To-Do list:
- Make sure the binary transfer properties and functions are working
        correctly.
- Make VC++ "sample" applications
- Add OnGetHost() event, and AsyncHandle property (for non-blocking DNS
        lookups)
- Add TCP/UDP and OOB switch.

Unused Property
You, somehow, have managed to start up an older version of this HLP file with a newer
version of WSANET.VBX. The context-sensitive help that you have selected is for a control
property or event that this HLP file does not know about. Please check your system path
for the older HLP file, and replace it with the new one.

Have fun!

 Ini Management Control
Properties Methods Events Errors Examples
Description

You can use the Ini control to access the Windows API calls that read to and write from .INI
files. This control is invisible at run time, much like the timer control provided with Visual
Basic.

File name
WSANET.VBX

Object Type
Ini

Remarks
This control encapsulates the standard Windows API calls WritePrivateProfileString() and
GetPrivateProfileString(). The Ini control makes it possible to read to and write from .INI
files with little programming effort. The rationale behind including this control in the
WSANET project was twofold; The Ini control is small, and almost every TCP/IP application
requires some form of database or state information.

INI Format
Filename:
[Section]
Entry = Value

Properties
These are the properties for the Ini Control. Properties
that apply only to this control, or that require special
consideration when using it, are marked with an
asterisk (*).

CtlName Index Tag
*Default Left Top
*Entry Parent *Value
*Filename *Section

Value is the default property

Methods
This current version of the Ini control supports no custom Methods.

Events
This current version of the Ini control includes no standard or custom Events.

Errors
This current version of the Ini control will ONLY return one error:

ERR_OUTOFMEMORY - Error #7 - Out of memory

Examples
Here is a quick example of how to use the Ini control. The following is a fictitious .INI file:

{sequoia.ini}
[Sequoia]
MailFile=C:\MAIL\MAIL.TXT
CheckInterval=30
FullName=Ian C. Blenke
HomeAddress=iblenke@rhino.ess.harris.com
SMTPHostIP=130.41.1.251
TempDir=C:\WINDOWS\TEMP

Here are two quick subroutines that can access any entry in the above file:

Function GetSequoiaEntry(sEntry As String, sDefault As String) As String
Ini.Filename = "sequoia.ini"
Ini.Section = "Sequoia"
Ini.Entry = sEntry
Ini.Default = sDefault
GetSequoiaEntry = Ini.Value

End Function
Sub SetSequoiaEntry(sEntry As String, sValue As String)
Ini.Filename = "sequoia.ini"
Ini.Section = "Sequoia"
Ini.Entry = sEntry
Ini.Value = sValue

End Sub
Usage

From here, you could set the HomeAddress entry to "iblenke@ic1d.harris.com" with the
code:

SetSequoiaEntry("HomeAddress", "iblenke@ic1d.harris.com")

and you could read the HomeAddress entry with:

sSavedAddress = GetSequoiaEntry("HomeAddress", "")

YES, It really is that easy!

Note: You DO NOT need to set the properties in any given order. As long as the
appropriate properties are set before you use the Value property, you do not need
to set them every time (they are stored internally as VB strings for each instance
of the INI control).

Default Property, Ini Control
Description

This property is the Default value returned through the Value property if no Entry in
[Section] of a Filename can be found.

Visual Basic
[form .]Ini .Default[= value$]
[value$] = [form .] Ini.Default

Visual C++
pIni->GetStrProperty("Default")
pIni->SetStrProperty("Default", eol$)

Remarks
This property corresponds to the Default argument to a GetPrivateProfileString() call.

VB Errors
ERR_OUTOFMEMORY (7) - When Default is read, and a response string could not

be created.

Data Type
String (HSZ)

Scope
VB1.0+/VC++

Entry Property, Ini Control
Description

This property is the Entry line in the [Section] of a Filename that you must set in order to
use the Value property.

Visual Basic
[form .]Ini .Entry[= entry$]
[entry$] = [form .] Ini.Entry

Visual C++
pIni->GetStrProperty("Entry")
pIni->SetStrProperty("Entry", entry$)

Remarks
This property corresponds to the Entry argument given to both the
GetPrivateProfileString() and WritePrivateProfileString() calls.

If the Entry in a [Section] of the .INI file does not exist, when Value is set, the Entry will be
created.

If the Entry in a [Section] in the .INI file does not exist, when Value is read, the Default
value is returned.

VB Errors
ERR_OUTOFMEMORY (7) - When Entry is read, and a response string could not be

created.

Data Type
String (HSZ)

Scope
VB1.0+/VC++

Filename Property, Ini Control
Description

This property is the Filename of the .INI file from which to extract a Value from a Entry in
a [Section]

Visual Basic
[form .]Ini .Filename[= ini_filename$]
[ini_filename$] = [form .] Ini.Filename

Visual C++
pIni->GetStrProperty("Filename")
pIni->SetStrProperty("Filename", ini_filename$)

Remarks
This property corresponds to the Filename argument given to both the
GetPrivateProfileString() and WritePrivateProfileString() calls. You do NOT have to use a full
path name: in fact, it is better to use just the base .INI filename in order to allow users to
keep their .INI files wherever they wish in their path. The Windows API calls take care of the
underlying searches, you merely have to set this property to the name of an .INI file
somewhere in the system path.

If the .INI file corresponding to Filename does not exist, when Value is set, the .INI file will
be created.

If the .INI file corresponding to Filename does not exist, when Value is read, the Default
value is returned.

VB Errors
ERR_OUTOFMEMORY (7) - When Filename is read, and a response string could not

be created.

Data Type
String (HSZ)

Scope
VB1.0+/VC++

Section Property, Ini Control
Description

This property is the Section in a .INI Filename from which to extract a Value from a Entry.

Visual Basic
[form .]Ini .Section[= section$]
[section$] = [form .] Ini.Section

Visual C++
pIni->GetStrProperty("Section")
pIni->SetStrProperty("Section", section$)

Remarks
This property corresponds to the Section argument given to both the
GetPrivateProfileString() and WritePrivateProfileString() calls.

If the [Section] in an .INI file corresponding to the Section property does not exist, when
Value is set, the [Section] will be created.

If the [Section] in an .INI file corresponding to the Section property does not exist, when
Value is read, the Default value is returned.

VB Errors
ERR_OUTOFMEMORY (7) - When Section is read, and a response string could not

be created.

Data Type
String (HSZ)

Scope
VB1.0+/VC++

Value Property, Ini Control
Description

This property is the actual Value that is set as an Entry in a Section in an .INI Filename.
This property is the default property of the Ini control.

Visual Basic
[form .]Ini .Value[= value$]
[value$] = [form .] Ini.Value

Visual C++
pIni->GetStrProperty("Value")
pIni->SetStrProperty("Value", value$)

Remarks
This property corresponds to the actual buffer or string argument given to both the
GetPrivateProfileString() and WritePrivateProfileString() calls.

If the Filename, Section, or Entry do not exist, the Value property will return what is in the
Default property when read.

If the Filename, Section, or Entry do not exist, and the Value property is set, the
appropriate fields in the .INI file will be created.

VB Errors
ERR_OUTOFMEMORY (7) - When Value is read, and a response string could not be

created.

Data Type
String (HSZ)

Scope
VB1.0+/VC++

 WinSock Network Server Control
Properties Methods Events Errors Examples

Description
You can use the NetServer control to access the Windows Sockets v1.1 server calls. This
control is invisible at run time, much like the timer control provided with Visual Basic.

File name
WSANET.VBX

Object Type
NetServer

Remarks
The NetServer control uses functionality provided by a vendor specific version of
WINSOCK.DLL that is provided with your TCP/IP protocol kernel. With this control, you can
export any TCP service that you want for other TCP/IP hosts to use. This control supports
the TCP server side paradigm only, you must use the NetClient control to initiate a client
connection to a remote host. You must also use the NetClient control to actually talk to any
remote host that the NetServer control accept()s. A UDP server cannot yet be written with
the current version of this control.

Distribution Note When you create and distribute applications written with the NetServer
control, you should copy the file RELEASE.VBX as WSANET.VBX into your user's \SYSTEM
subdirectory or otherwise in the system path. The WSANET.VBX file distributed with the
project is a debugging version (and thus requires DBWIN or OX.SYS in order to work
correctly).

Properties
These are the properties for the NetServer control.
Properties that apply only to this control, or that
require special consideration when using it, are marked
with an asterisk (*).

*About hWnd *LocalServic
e

Top

CtlName(Name) Index Parent *Version
*Debug Left *QueueSize
*ErrorMessage *Listen *Socket
*ErrorNumber *LocalPort Tag

Listen is the default property

Methods
This current version of the NetServer control supports no custom Methods.

Events
The NetServer control supports 2 events:

OnAccept() OnError()

Errors
This current version of the NetServer control returns these errors:

VBERR_INVALIDPROPERTYVALUE 380
VBERR_READONLY 383
VBERR_WRITEONLY 394
WSAERR_AlreadyConn 20001
WSAERR_NotConn 20005

You can include the "constants" file WSANET.TXT to get these Global Const's.

Examples
The NetServer control currently has 2 sample applications:

WFingerd A simple Finger Daemon/Server that can accept/handle 1 connection at a
time.

VB-SMTPD A complex SMTP Daemon/Server that can accept/handle multiple
connections at a time, each connection contains it's own "state".

Debug Property, NetServer Control
Description

Sets or returns the current state of the SO_DEBUG socket option on the main listen()ing
socket.

Visual Basic

[form .] NetServer.Debug [= bool%]
[bool%] = [form .] NetServer.Debug

Visual C++
pNetServer->GetNumProperty("Debug")
pNetServer->SetNumProperty("Debug",bool%)

Remarks
This property reflects the current socket level debugging state of the main listening socket.

When setting this property, if Listen is False, WSAERROR_NotConn (20005) is set by the
control, and no action is taken. If Listen is True, setsockopt() is called, or the ErrorNumber
property is set to the appropriate WinSock error.

When reading this property, if Listen is False, False is ALWAYS returned. If Listen is True,
getsockopt() is called, or the ErrorNumber property is set to the appropriate WinSock error.

The debugging information supplied by most WinSock vendors is in the form of
OutputDebugString() calls. In order to view this debugging information, you will need the
DBWIN application from the 3.1 SDK, or an equivalent application that hooks the
debugging output. Most commercial packages do NOT include any debugging information,
or support the SO_DEBUG socket option.

WinSock calls
getsockopt(), setsockopt()

Data Type
Integer (Boolean)

Scope
VB1.0+/VC++

Listen Property, NetServer Control
Description

Reports or sets the current connection status of the associated socket.

Visual Basic
[form .] NetServer.Listen[= state%]
[state%] = [form .] NetServer.Listen

Visual C++
pNetServer->GetNumProperty("Listen")
pNetServer->SetNumProperty("Listen", state)

Remarks
Setting this property to True (-1 or <> 0 and <> 2) will cause the control to start listening
to the specified LocalPort. The port is allocated with SO_REUSEADDR, so be sure to remind
the user that your daemon/server WILL take over the corresponding port. This "feature"
was created just in case the application inadvertantly crashes without closing the Socket.

Setting this property to LISTEN_DONTREUSE (2) will cause the control to start listening to
the specified LocalPort, but will NOT set the SO_REUSEADDR socket option. This is
intended for programs that do not wish to take over the port of a service that is already
handled by another application.

Setting this property to False (0) will cause the control to stop listening for any further
incoming connections via the closesocket() call.

WinSock Calls
socket(), WSAAsyncSelect(), bind(), listen(), closesocket()

Data Type
Integer

Scope
VB1.0+/VC++

ErrorMessage Property, NetServer Control
See Also
Description

Returns the error message for the ErrorNumber property.

Visual Basic
[message$] = [form .] NetServer.ErrorMessage

Visual C++
pNetServer->GetStrProperty("ErrorMessage")

Remarks
This property corresponds to the ErrorNumber property. The VBX's resource string table is
used to get the corresponding error message.

WinSock Calls
None.

Data Type
String (HSZ)

Scope
VB1.0+/VC++

See also
ErrorNumber
OnError()

ErrorNumber Property, NetServer Control
See Also
Description

Reports any error condition from the NetServer control.

Visual Basic
[form .] NetServer.ErrorNumber [= status%]
[status%] = [form .] NetServer.ErrorNumber

Visual C++
pNetServer->GetNumProperty("ErrorNumber")
pNetServer->SetNumProperty("ErrorNumber",status%)

Remarks
This property returns any error at the Windows Sockets level. You can set this property at
any time in your application. The ErrorMessage property returns strings based upon the
value stored in this property.

Please consult WinSock Errors for more information on WinSock specific errors.

WinSock Calls
WSAGetLastError() is called to get the error status whenever a WinSock function returns
SOCKET_ERROR. Therefore, this property does not call any WinSock related functions;
ErrorNumber is set as the error occurs.

Data Type
Integer

Scope
VB1.0+/VC++

See also
ErrorMessage
OnError()

LocalPort Property, NetServer Control
See Also
Description

The LocalPort property is used to set the local port number for the NetServer control to
listen() to for an incoming TCP connection.

Visual Basic
[form .] NetServer.LocalPort[= port%]
[port%] = [form .] NetServer.LocalPort

Visual C++
pNetServer->GetNumProperty("LocalPort")
pNetServer->SetNumProperty("LocalPort", port%)

Remarks
This property denotes the local port that is used to bind() a listen()ing NetServer Socket to.
Any port number from 1 to 32767 can be used, altough the ports between 1 and 1024 are
usually reserved for "restricted port" TCP services.

The idea of restricted ports stems from BSD Unix, where an application must run as root in
order to bind() to a port below 1023. These ports are the well known Unix services such as
FTP, SMTP, Finger, and so on.

Note: You MUST set this property before using the Listen property.

WinSock Calls
This property is used at listen() time. See the Listen property for more information.

Data Type
Integer

Scope
VB1.0+/VC++

See also
LocalService
Listen
QueueSize

LocalService Property, NetServer Control
See Also
Description

This property allows an application to use the getservbyXXX() database services. By using
this property, you allow the user to merely modify their TCP/IP's stack in order to use the
port that your application uses for the local client port binding.

Visual Basic
[form .]NetServer .LocalService[= name$]
[name$] = [form .] NetServer.LocalService

Visual C++
pNetServer->GetStrProperty("LocalService")
pNetServer->SetStrProperty("LocalService", name$)

Remarks
This property is used instead of the LocalPort property in order to set the Service name for
the local port.

When set, this property calls getservbyname() and sets LocalPort to the corresponding
integer port number.

When you get this properties' value it calls getservbyport() and returns the appropriate
Service name for the LocalPort property.

When you either set or get this property, check it for an empty string (""). When the
Service database lookup fails with a NULL pointer, this property will be set to "", and
LocalPort will be set to 0.

The only real reason for using this property is to use reserved ports. You should use this
call instead of the LocalPort property - not use a hard set value. This will allow your users
to merely change their HOSTS file (or equivalent) to change the port that the daemon runs
on. You may also decide to allow the user to set a desired port via your own application's
setup dialog instead of their HOSTS file.

Some Vendors' WinSock.DLLs will appropriately block if the "Services" database is not held
locally (i.e. Sun's NIS paradigm). Most Vendors implement their WinSock.DLLs in a non-
blocking manner, but to do the opposite is quite within the WinSock v1.1 specification;
thus, you may have a perceptible delay when this property is accessed.

WinSock Calls
getservbyname(), getservbyport()

Data Type
String (HSZ)

Scope
VB1.0+/VC++

See also
LocalPort
Listen
QueueSize

QueueSize Property, NetServer Control
See Also
Description

The QueueSize property is used to set the number of allowed "queued" incoming
connections. This is the exact value given to the listen() call.

Visual Basic
[form .] NetServer.QueueSize[= size%]
[size%] = [form .] NetServer.QueueSize

Visual C++
pNetServer->GetNumProperty("QueueSize")
pNetServer->SetNumProperty("QueueSize", size%)

Remarks
You MUST set this property before you set the Listen property to True. If you set this
property afterwards, it has no effect.

The default Windows Sockets v1.1 value for this property is 5.

This value currently has little effect other than to allow multiple clients to simulaneously
connect to the listen() - after which one accept() at a time is handled.

Note: I can see no reason to change this value under the v1.1 spec, but I have included it
just in case.

WinSock Calls
This property is used when listen() is called when the Listen property is set to True.

Data Type
Integer

Scope
VB1.0+/VC++

See also
LocalPort
LocalService
Listen

Socket Property, NetServer Control
Description

Socket specifies the actual socket that is listening for incoming connections.

Visual Basic
[form .] NetServer.Socket=[socket%]
[size%] = [form .] NetServer.Socket

Visual C++
pNetServer->GetNumProperty("Socket")
pNetServer->SetNumProperty("Socket", socket%)

Remarks
If Listen is False, this property has no meaning when read. The socket() call is not made
until the Listen property is set.

If Listen is False, and you set this property to either 0 or SOCKET_ERROR (-1), the Listen
property will be set to False - regardless.

There is no real reason to set the Socket property in the NetServer control, so it is
currently NOT allowed (and will set the VB error VBERR_READONLY (383)).

Do NOT attempt a closesocket() on this handle. It will not currently have any adverse
affects (other than sporadic errors), but it might in future versions. Do NOT set this Socket
to blocking, and do NOT do a WSAAsyncSelect() on Socket, as it will surely break the
current control.

For further reference, you may want to consult What is a Socket? and the WinSock.HLP file.

WinSock Calls
None.

Data Type
Integer

Scope
VB1.0+/VC++

Version Property, NetServer Control
Description

This property reports the current revision of the NetServer control. The current version of
THIS WSANET.VBX distribution will return "v1.08alpha" as the version string.

Visual Basic
[version$] = [form .] NetServer.Version

Visual C++
pNetServer->GetStrProperty("Version")

Remarks
This property can NOT be set.

 You can use this property at run time to warn the user that the application may, or may
not, work with any newer version of the control. The NetServer control currently uses only
1 model - VB1.0 (although it does trick newer versions into thinking that it is VB2.0 in order
to allow context sensitive help). Because of this single model approach, there should be no
future incompatibilities with versions of this control.

This string is merely a way for programmers to deal with known incompatibilities of
WSANET.VBX versions, and to report version information to the user. This is NOT the way
for an application to realize the version of WinSock it is using - this version of WSANET
does NOT support any version beside WinSock v1.1 (although future versions of certain
Vendor's WINSOCK.DLLs may support the earlier v1.1 API).

WinSock Calls
None.

Data Type
String (Hsz)

Scope
VB1.0+/VC++

See Also
OnAccept
OnError

Using Events

OnAccept Event, NetServer Control
See Also
Description

Generated whenever a connection is accepted from a remote host.

Visual Basic
Sub NetServer_OnAccept([Index As Integer],    Socket As Integer, PeerAddr As String,

RemotePort As Integer)

Visual C++
Function Signature:
void CMyDialog::On Outline OnAccept(UINT, int, CWnd*, LPVOID lpParams)

Parameter Usage:
I do not know how to access multiple VBX event parameters with the MFC2.0 classes.

Remarks
The OnAccept() event is generated whenever a connection from a remote host is
accept()ed.

After this event is fired, you shold hand the Socket event parameter to a NetClient control's
Socket property in order to continue a connection. If, by checking the PeerAddr event
parameter, you do not wish to talk to that host, you should set the Socket event parameter
to -1 (SOCKET_ERROR) or 0 to close the accept()ed Socket.

The following example code shows a simple OnAccept() event handler:

Sub NetServer_OnAccept (Socket As Integer, PeerAddr As String, RemotePort As
Integer)

 On Error Resume Next
 If NetClient.Connect = True Then
 Socket = 0 ' Don't allow multiple fingers
 Exit Sub
 End If
 NetClient.Socket = Socket
End Sub

WinSock Events
This event is fired on response to an FD_ACCEPT message.

OnError Event, NetServer Control
See Also
Description

Generated whenever an error of some kind occurs in the NetServer control.

Visual Basic
Sub NetServer_OnError([Index As Integer], ErrorNumber As Integer)

Visual C++
Function Signature:
void CMyDialog::On Outline OnError(UINT, int, CWnd*, LPVOID lpParams)

Parameter Usage:
I do not know how to access multiple VBX event parameters with the MFC2.0 classes.

Remarks
The ErrorNumber value and ErrorMessage property can be used to identify the error that
occurred.

WinSock Events
This event is fired whenever an error occurs. WSAGetLastError() is called by the NetServer
control if the error was WinSock related before the OnError() event is fired.

 WinSock Network Client Control
Properties Methods Events Errors Examples
Description

You can use the NetClient control to access Windows Sockets v1.1 services. This control is
invisible at run time, much like the timer control provided with Visual Basic.

File name
WSANET.VBX

Object Type
NetClient

Remarks
The NetClient control uses functionality provided by a vendor specific version of
WINSOCK.DLL that is provided with your TCP/IP protocol kernel. With this control, you can
access any TCP service that is running on a TCP/IP host. This control supports the TCP
client side paradigm only, you must use the NetServer control in order to write
server/daemon applications. UDP and OOB communication are not yet supported in this
version.

See About this project for more general information
See the Changes that have been made to this version.
See the public domain Copyright information for distribution availability.

Distribution Note When you create and distribute applications written with the NetClient
control, you should copy the file RELEASE.VBX as WSANET.VBX into your user's \SYSTEM
subdirectory or otherwise in the system path. The WSANET.VBX file distributed with the
project is a debugging version.

Properties
These are the properties for the NetClient Control. Properties that apply only to this client
control, or that require special consideration when using it, are marked with an asterisk (*).

*About *HostAliasCou
nt

Parent *SendLine

*Block *HostAliasList *RecvBlock *SendSize
*Connect *HostName *RecvCount *SendThreshol

d
*Debug Index *RecvLine *Socket
*ErrorMessage Left *RecvSize *TimeOut
*ErrorNumber *Line *RecvThreshol

d
Tag

*Host *LineDelimiter *RemotePort Top
*HostAddr *LocalPort *RemoteServic

e
*Version

*HostAddressCou
nt

*LocalService *SendBlock

*HostAddressList Name *SendCount

Line is the default property.

Methods
This current version of the NetClient control supports no custom Methods.

Events

The NetClient control uses 6 custom Events in order to support Asyncronous Windows
Sockets.

OnConne
ct

OnRecv OnSend OnClose OnError OnTimeO
ut

Errors
Windows Sockets errors are returned by triggering the OnError() event, and setting the
ErrorNumber and ErrorMessage properties appropriately.

The NetClient control currently sets the following errors:

ERR_OUTOFMEMORY 7
VBERR_INVALIDPROPERTYVALU
E

380

VBERR_BADVBINDEX 381
VBERR_READONLY 383   
VBERR_WRITEONLY 394
WSAERR_BadHostAddr 20000
WSAERR_AlreadyConn 20001
WSAERR_NoTimers 20002
WSAERR_RecvBuffer 20003
WSAERR_SendOverFlow 20004
WSAERR_NotConn 20005

These errors are all contained within the "constants" file WSANET.TXT

You MUST use On Error handlers to trap these errors.

Coding Examples
WSANET.VBX is origionally packaged with 5 example programs that show how to use the
NetClient control effectively. All examples have been tested in VB2.0 and VB3.0, and are
shown here in text saved format. Only the VB2.0 examples are included in this HLP file for
space considerations.

WFinger A simple finger client. Shows how to carry on a simple conversation.
WiNslookup - A NSLookup like application. Shows how to use DNS and I.P lookup

properties.
WSMTPC - A simple SMTP client. Shows how to make a state-based client

application.
WinWhois - A "NicName" or WHOIS client. Shows how to use the INI control, and

the NetClient control in a real application.
WFingerD - A simple finger server. Shows how to use the NetServer control with 1

connection at a time service.
VB-SMTPD - A complex SMTP daemon. Shows how to create an unlimited

connection state server with the NetServer control.

In order to use the above examples, you may locate the relevant materials and use
WinHelp's Edit/Copy menu to copy the selected source directly into your code window.

About Property, NetClient & NetServer Controls
Description

Shows the Author and version of your current WSANET.VBX during design time.

Visual Basic
Design time only

Visual C++
Design time only.

Remarks
This property merely shows the current version "stepping" of WSANET.VBX and the
author's name in a dialog box form. This should be of little importance to the application
developer. For more project information, read About this project and Thanks

WinSock Calls
None.

Data Type
None. (Only a VBM_GETPROPHSZ response)

Scope
VB1.0+/VC++

Block Property, NetClient Control
See Also
Description

Sends or receives a block of raw binary data from/to a connected Socket.

Visual Basic
[form .]NetClient .Block[= setting$]
[setting$] = [form .] NetClient.Block

Visual C++
Visual C++ cannot Access Visual Basic strings. (HLSTR is implemented as a property only
in VB2.00+) Consult the NetClientSendBlock() and NetClientRecvBlock() DLL function
exports for more information.

Remarks
This property is nothing more than BOTH the SendBlock and RecvBlock properties
combined into a single property. Setting this property invokes SendBlock, and getting this
property invokes RecvBlock.

WinSock Calls
See the RecvBlock and SendBlock properties.

Data Type
String (HLSTR)

Scope
VB2.0+

See also
RecvBlock
SendBlock

Connect Property, NetClient Control
See Also
Description

Reports or sets the current connection status of the associated socket.

Visual Basic
[form .] NetClient.Connect[= state%]
[state%] = [form .] NetClient.Connect

Visual C++
pNetClient->GetNumProperty("Connect")
pNetClient->SetNumProperty("Connect", state)

Remarks
Setting this property to True (<>0, or -1 in VB) will cause the control to try and connect to
a remote host. Set    this property to True only when you have set the RemotePort and
HostName/HostAddr pair to the desired TCP port and machine name for the remote host.

If you set LocalPort to non-zero, a bind() will executed to bind the local end of the port to
the desired port. If LocalPort is zero, no binding is performed, and the WinSock connect()
call will bind() the local end to a benign port.

Setting this property to False (=0) will cause the control to terminate any ongoing
connections with the remote host via the closesocket() call.

WinSock Calls
socket(), WSAAsyncSelect(), bind(), connect(), closesocket()

Data Type
Integer

Scope
VB1.0+/VC++

See also
HostName
HostAddr
LocalPort
RemotePort

Debug Property, NetClient Control
Description

Sets or returns the current state of the SO_DEBUG socket option.

Visual Basic

[form .] NetClient.Debug [= bool%]
[bool%] = [form .] NetClient.Debug

Visual C++
pNetClient->GetNumProperty("Debug")
pNetClient->SetNumProperty("Debug",bool%)

Remarks
This property reflects the current socket level debugging state of a connected socket.

When setting this property, if Connect is False, WSAERR_NotConn (error 20000) is set by
the control, and no action is taken. If Connect is True, setsockopt() is called, or the
ErrorNumber property is set to the appropriate WinSock error.

When reading this property, if Connect is False, False is ALWAYS returned. If Connect is
True, getsockopt() is called, or the ErrorNumber property is set to the appropriate WinSock
error.

The debugging information supplied by most WinSock vendors is in the form of
OutputDebugString() calls. In order to view this debugging information, you will need the
DBWIN application from the 3.1 SDK, or an equivalent application that hooks the
debugging output.

WinSock calls
getsockopt(), setsockopt()

Data Type
Integer (Boolean)

Scope
VB1.0+/VC++

ErrorMessage Property, NetClient Control
See Also
Description

Returns the error message for the ErrorNumber property.

Visual Basic
[message$] = [form .] NetClient.ErrorMessage

Visual C++
pNetClient->GetStrProperty("ErrorMessage")

Remarks
This property corresponds to the ErrorNumber property. The VBX's resource string table is
used to get the corresponding error message.

WinSock Calls
None.

Data Type
String (HSZ)

Scope
VB1.0+/VC++

See also
ErrorNumber
OnError()

ErrorNumber Property, NetClient Control
See Also
Description

Reports any error condition from the NetClient control.

Visual Basic
[form .] NetClient.ErrorNumber [= status%]
[status%] = [form .] NetClient.ErrorNumber

Visual C++
pNetClient->GetNumProperty("ErrorNumber")
pNetClient->SetNumProperty("ErrorNumber",status%)

Remarks
This property returns any error at the Windows Sockets level, or other miscellaneous errors
caused by control usage error. You can set this property at any time in your application.
The ErrorMessage property returns strings based upon the value stored in this property.

Please consult WinSock Errors for more information on WinSock specific errors.

WinSock Calls
WSAGetLastError() is called to get the error status whenever a WinSock function returns
SOCKET_ERROR. Therefore, this property does not call any WinSock related functions;
ErrorNumber is set as the error occurs.

Data Type
Integer

Scope
VB1.0+/VC++

See also
ErrorMessage
OnError()

Host Property, NetClient Control
See Also
Description

This property is used to resolve an I.P. number or DNS name, and set the remote host's
address for socket communication.

Visual Basic
[form .] NetClient.Host[= host$]
[host$] = [form .] NetClient.Host

Visual C++
pNetClient->GetStrProperty("Host")
pNetClient->SetStrProperty("Host", hostaddr)

Remarks
When set, first a HostName lookup, and then a HostAddr lookup is attempted on the host
name.

This property returns the same thing as HostName (it uses the same property handling
code).

Please see the HostName and HostAddr properties for the full description.

This property is merely a "convenience" property for applications to avoid checking both of
the above properties during a user input.

Currently, setting this property invokes the corresponding blocking call of your WinSock.
This is not the best way to implement this functionality. A better way would be to add a
OnGetHost() event and a HostAsync property. If this were used, WSAAsyncGetHostByAddr()
could be used, and your application would not block. While your application blocks, your
application will stick until it completes.

WinSock Calls
inet_ntoa(), inet_addr(), gethostbyaddr(), gethostbyname()

Data Type
String (HSZ)

Scope
VB1.0+/VC++

See also
HostAddr
HostName
HostAddressCount
HostAddressList
HostAliasCount
HostAlistList

HostAddr Property, NetClient Control
See Also
Description

This property is used to resolve an I.P. number and set the remote host's address for socket
communication.

Visual Basic
[form .] NetClient.HostAddr[= hostaddr$]
[hostaddr$] = [form .] NetClient.HostAddr

Visual C++
pNetClient->GetStrProperty("HostAddr")
pNetClient->SetStrProperty("HostAddr", hostaddr)

Remarks
At run time, this property initially holds the I.P. address of your local host (or "" if your
WinSock is substandard).

Setting this property to a host number string invokes the name resolver. Your program will
temporarily block (for often no more than a fraction of a second) while a DNS lookup is
made through your local name server or local hosts file on your PC. If an error occurs, this
property will be set to a empty string ("") , the HostName property will be set to an empty
string ("") and the OnError() event will be called with the appropriate WinSock error. If no
error occurs, this property will be set to the I.P. address of the host, and the HostName
property will be set to the correct FQDN of the host.

Reading this property will be the result of any previous set operation, or your local PC's I.P.
address if it is the first time you access it.

If you use this property on a Connected session, you will loose all reference to the machine
that the control was talking to. The socket communications will proceed, but it becomes
your application's responsibility to know who it is talking to.

You only need to set HostAddr OR HostName; setting both is unnecessarily redundant.
After setting one of these properties, the other is set appropriately.

If the requested Host is in your WinSock.DLL's database (most likely from a file named
"hosts" in its path), no blocking should be involved - but this seems to be vendor specific. If
your vendor's WinSock.DLL does not block as it reads its database, there should be no
actual delay as normal DNS lookups would incur.

Currently, setting this property invokes the corresponding blocking call of your WinSock.
This is not the best way to implement this functionality. A better way would be to add a
OnGetHost() event and a HostAsync property. If this were used, WSAAsyncGetHostByAddr()
could be used, and your application would not block. While your application blocks, your
application will stick until it completes.

WinSock Calls
inet_ntoa(), inet_addr(), gethostbyaddr()

Data Type
String (HSZ)

Scope

VB1.0+/VC++

See also
HostName
HostAddressCount
HostAddressList
HostAliasCount
HostAlistList

HostAddressCount Property, NetClient Control
See Also
Description

This property holds the current number of elements in the HostAddressList property array.
This number signifies the number of I.P. Addresses for a DNS host.

Visual Basic
[count%] = [form .] NetClient.HostAddressCount

Visual C++
pNetClient->GetNumProperty("HostAddressCount")

Remarks
When you set HostAddr or HostName, this property is set automagically.

Setting HostAddressCount will return VBERR_WRITEONLY (383).

Reading HostAddressCount will tell you the number of I.P. strings contained in the
HostAddressList() property array. Do NOT attempt to read past this limit, or you will receive
VBERR_BADVBINDEX (381).

WinSock Calls
None. This property calls no actual WinSock calls. The number returned is from the number
of h_address_list[] entries in the HOSTENT structure returned by
gethostbyname()/gethostbyaddr().

Data Type
Integer

Scope
VB1.0+/VC++

See also
HostAddr
HostName
HostAddressList
HostAliasCount
HostAliasList

HostAddressList Property, NetClient Control
See Also
Description

This property array holds the I.P. strings returned via gethostbyname()/gethostbyaddr().

Visual Basic
[hostaddr$] = [form .] NetClient.HostAddressList(index)

Visual C++
I do not know how VC++ uses property arrays.

Remarks
When you set HostAddr or HostName, this property is set automagically.

This property array holds the h_address_list[] array as returned through the HOSTENT
structure by gethostbyname()/gethostbyaddr().

The number of elements of this array is available through the HostAddressCount property.
Do NOT attempt to access the HostAddressList() array past this limit, or you will receive
VBERR_BADVBINDEX (381).

By using the index to step through the array, you can find all I.P. addresses for a remote
host. This helps multi-homed clients and applications that need to know multiple "routes"
to a remote host.

HostAddressList(0) will ALWAYS hold the same value as HostAddr, so HostAddressCount
will always be 1 if HostAddr holds a valid I.P string.

WinSock Calls
None. This property calls no actual WinSock calls. The number returned is from the actual
h_address_list[] entries in the HOSTENT structure returned by
gethostbyname()/gethostbyaddr().

Data Type
Array of Strings

Scope
VB1.0+, VC++ possibly

See also
HostAddr
HostName
HostAddressCount
HostAliasCount
HostAliasList

HostAliasCount Property, NetClient Control
See Also
Description

This property holds the current number of elements in the HostAliasList property array.
This number signifies the number of I.P. Addresses for a DNS host.

Visual Basic
[count%] = [form .] NetClient.HostAliasCount

Visual C++
pNetClient->GetNumProperty("HostAliasCount")

Remarks
Setting HostAliasCount will return VBERR_WRITEONLY (383).

Reading HostAliasCount will tell you the number of DNS host strings contained in the
HostAliasList() property array. Do NOT attempt to read past this limit, or you will receive
VBERR_BADVBINDEX (381).

WinSock Calls
None. This property calls no actual WinSock calls. The number returned is from the number
of h_aliases[] entries in the HOSTENT structure returned by
gethostbyname()/gethostbyaddr(). When you set HostAddr or HostName, this property is
set automagically.

Data Type
Integer

Scope
VB1.0+/VC++

See also
HostAddr
HostName
HostAliasList
HostAddressCount
HostAddressList

HostAliasList Property, NetClient Control
See Also
Description

This property array holds the DNS strings returned via gethostbyname()/gethostbyaddr().

Visual Basic
[hostaddr$] = [form .] NetClient.HostAliasList(index)

Visual C++
I do not know how VC++ uses property arrays.

Remarks
When you set HostAddr or HostName, this property is set automagically.

This property array holds the h_aliases[] array as returned through the HOSTENT structure
by gethostbyname()/gethostbyaddr().

The number of elements of this array is available through the HostAliasCount property. Do
NOT attempt to access the HostAliasList() array past this limit, or you will receive
VBERR_BADVBINDEX (381).

By using the index to step through the array, you can find all DNS addresses for a remote
host. This helps multi-homed clients and applications that need to know multiple "routes"
to a remote host.

WinSock Calls
None. This property calls no actual WinSock calls. The number returned is from the actual
h_aliases[] entries in the HOSTENT structure returned by
gethostbyname()/gethostbyaddr().

Data Type
Array of Strings

Scope
VB1.0+, VC++ possibly

See also
HostAddr
HostName
HostAliasCount
HostAddressCount
HostAddressList

HostName Property, NetClient Control
See Also
Description

This property is used to resolve a DNS    name and set the remote host's FQDN for socket
communication.

Visual Basic
[form .] NetClient.HostName[= hostname$]
[fullhostname$] = [form .] NetClient.HostName

Visual C++
pNetClient->GetStrProperty("HostName")
pNetClient->SetStrProperty("HostName", hostname)

Remarks
At run time, this property initially holds the FQDN of your local host (or "" if your WinSock is
substandard).

Setting this property to a host name invokes the name resolver. Your program will
temporarily block (for often no more than a fraction of a second) while a DNS lookup is
made through your local name server or local hosts file on your PC. If an error occurs, this
property will be set to a empty string ("") , the HostAddr property will be set to an empty
string ("") and the OnError() event will be called with the appropriate WinSock error. If no
error occurs, this property will be set to the FQDN of the host, and the HostAddr property
will be set to the correct I.P. string for the host.

Reading this property will be the result of any previous set operation, or your local PC's
FQDN if it is the first time you access it.

You only need to set    HostAddr OR HostName; setting both is unnecessarily redundant.
After setting one of these properties, the other is set appropriately.

If the requested Host is in your WinSock.DLL's database (most likely from a HOSTS    file),
no blocking should be involved - but this seems to be vendor specific. If your vendor's
WinSock.DLL does not block as it reads its database, there should be no actual delay as
normal DNS lookups would incur.

Currently, setting this property invokes the corresponding blocking call of your WinSock.
This is not the best way to implement this functionality. A better way would be to add a
OnGetHost() event and a HostAsync property. If this were used,
WSAAsyncGetHostByName() could be used, and your application would not block. While
your application blocks, your application will stick until it completes.

WinSock Calls
inet_ntoa(), gethostbyname()

Data Type
String (HSZ)

Scope
VB1.0+/VC++

See also
HostAddr

Line Property, NetClient Control
See Also
Description

Sends or receives a Line of data from/to a connected Socket.

Visual Basic
[form .]NetClient .Line[= lineoutput$]
[lineinput$] = [form .] NetClient.Line

Visual C++
pNetClient->GetStrProperty("Line")
pNetClient->SetStrProperty("Line", lineoutput$)

Remarks
This property is nothing more than BOTH the SendLine and RecvLine properties combined
into a single property. Setting this property invokes SendLine, and getting this property
invokes RecvLine.

WinSock Calls
See the RecvLine, SendLine, and LineDelimiter properties.

Data Type
String (HSZ)

Scope
VB1.0+/VC++

See also
RecvLine
LineDelimiter
SendLine

LineDelimiter Property, NetClient Control
See Also
Description

This property is tied to the functionality of the RecvLine property and determines the end-
of-line marker for incoming data.

Visual Basic
[form .]NetClient .LineDelimiter[= eol$]
[eol$] = [form .] NetClient.LineDelimiter

Visual C++
pNetClient->GetStrProperty("LineDelimiter")
pNetClient->SetStrProperty("LineDelimiter", eol$)

Remarks
The LineDelimiter property is used to specify the end-of-line character sequence for
incoming data accessed through the RecvLine property. When set to a non-empty
sequence of characters (except Chr$(0)), this property dictates what can be seen in the
RecvLine property. When an application accesses the RecvLine property, the incoming
receive buffer is scanned for the character sequence in the LineDelimiter property and
any if the sequence is found, the stream preceeding the end-of-line sequence is returned.
The end-of-line sequence, when and if found, DOES NOT appear at the end of any data
received from the RecvLine property.

When LineDelimiter is set to an empty string (""), the RecvLine property will return the
entire incoming buffer.

An example use of the LineDelimiter property might be:

NetClient(0).LineDelimiter = Chr$(13) + Chr$(10)
This would set up any reads from RecvLine to return incoming lines that are terminated by
a Carriage Return and Line Feed sequence, respectively. This would be the appropriate
setting for talking to another DOS host, or protocol such as SMTP which specifies both
characters as a end-of-line marker. On most Unix style servers, the default end-of-line
sequence is Chr$(10) ("\n").

Translated sequences (for C programmer's convenience):
Strin
g

VB
Equivalent

ASCII
meaning

ASCII
"Keystroke"

"\n" Chr$(10) Linefeed Control J
"\r" Chr$(13) Carriage Return Control M
"\t" Chr$(8) Horizontal Tab Control H

Please consult the RecvLine and Line properties for more information.

NOTE: Due to the nature of this property, it may NOT contain an embedded NULL
character (Chr$(0)). If your data depends on binary data, you will have to use the
Block/RecvBlock/SendBlock properties.

Data Type
String (HSZ)

Scope
VB1.0+/VC++

See also
RecvLine
Line

LocalPort Property, NetClient Control
See Also Thanks
Description

The LocalPort property is used to set the local port number for a TCP connection.

Visual Basic
[form .] NetClient.LocalPort[= port%]
[port%] = [form .] NetClient.LocalPort

Visual C++
pNetClient->GetNumProperty("LocalPort")
pNetClient->SetNumProperty("LocalPort", port%)

Remarks
This property denotes the local port for the TCP connection to a remote port. Some TCP
daemons will only accept connections from programs that are locally bound to a port
below 1023. In order to make your application compliant to such restrictions, you should
loop backwards from 1023 to 512 in order to allocate a unique restricted port.

The idea of restricted ports stems from BSD Unix, where an application must run as root in
order to bind() to a port below 1023. Setting this property to 0 will allow the WinSock.DLL
to bind the local port to a unique port between 1023 and 5000. This functionality is
accomplished by not calling bind() at connect() time.

Here is a portion of code from a fictitious RSH server that allocates a restricted port:

On Error Resume Next

NetClient.RemotePort = 512
iPort = 1023

Do
NetClient.LocalPort = 1023
NetClient.ErrorNumber = 0 ' Clear ErrorNumber
NetClient.Connect = True
If NetClient.ErrorNumber = 0 Then Exit Sub
NetClient.ErrorNumber = 0
iPort = iPort - 1
If iPort = 512 Then

TextTTY = "Error! Ran out of reserved ports to bind to!"
Exit Sub

End If
DoEvents

Loop

Note: If you are not using reserved ports for your client, you should set this property to 0
to allow dynamic port allocation.

WinSock Calls
This property is used at connect() time. See the Connect property for more information.

Data Type
Integer

Scope

VB1.0+/VC++

See also
LocalService
RemotePort
HostName
HostAddr
Connect

LocalService Property, NetClient Control
See Also
Description

This property allows an application to use the getservbyXXX() database services. By using
this property, you allow the user to merely modify their TCP/IP's stack in order to use the
port that your application uses for the local client port binding.

Visual Basic
[form .]NetClient .LocalService[= name$]
[name$] = [form .] NetClient.LocalService

Visual C++
pNetClient->GetStrProperty("LocalService")
pNetClient->SetStrProperty("LocalService", name$)

Remarks
This property is not as useful as the RemoteService property in that you will probably
never need to allow the user to set the local client port binding. If you need to use
reserved ports, which is the only real reason for using this or the LocalPort property, you
will probably need to loop within a range of reserved ports - not use a hard set value from
your PC's Service database.

This property is used instead of the LocalPort property in order to set the Service name for
the local port.

When set, this property calls getservbyname() and sets LocalPort to the corresponding
integer port number.

When you get this properties' value it calls getservbyport() and returns the appropriate
Service name for the LocalPort property.

When you either set or get this property, check it for an empty string (""). When the
Service database lookup fails with a NULL pointer, this property will be set to "", and
LocalPort will be set to 0.

Some Vendors' WinSock.DLLs will appropriately block if the "Services" database is not held
locally. Most Vendors implement their WinSock.DLLs in a non-blocking manner, but to do
the opposite is quite within the WinSock v1.1 specification; thus, you may have a
perceptible delay when this property is accessed.

WinSock Calls
getservbyname(), getservbyport()

Data Type
String (HSZ)

Scope
VB1.0+/VC++

See also
LocalPort
RemotePort

RecvBlock Property, NetClient Control
See Also
Description

RecvBlock allows an application to talk in pure binary to a remote host.

Visual Basic
[message$] = [form .] NetClient.RecvBlock

Visual C++
Visual C++ cannot Access Visual Basic strings. (HLSTR is implemented as a property only
in VB2.00+) Consult the NetClientSendBlock() and NetClientRecvBlock() DLL function
exports for more information.

Remarks
RecvBlock uses the newer HLSTR property type (introduced in VB2.00+). Unlike the
RecvLine property with LineDelimiter set to "", embedded Null characters (Chr$(0)) is
permitted.

RecvBlock will return whatever is in the receive buffer as a VB string.

Visual C++ does NOT implement the HLSTR type as a property, so it must use the
functions NetClientSendBlock() and NetClientRecvBlock() that are exported from the VBX
itself (as a VBX is nothing more than a DLL).

WinSock Calls
None. This property calls no actual WinSock calls. The recv() call is used during an
FD_READ event generated to the control window via WSAAsyncSelect(), and the data is
buffered to be returned through this property on demand (usually in response to a
OnRecv() event).

Data Type
String (HLSTR)

Scope
VB2.0+

See also
Block
SendBlock

RecvCount Property, NetClient Control
See Also
Description

This property holds the current number of bytes awaiting processing in the Receive FIFO
buffer.

Visual Basic
[count%] = [form .] NetClient.RecvCount

Visual C++
pNetClient->GetNumProperty("RecvCount")

Remarks
Setting RecvCount has no effect.

This property changes as bytes are received on a connected socket. If the number of bytes
received exceed the limit in RecvThreshold, the OnRecv() event is fired. If RecvThreshold is
0, OnRecv() will be fired whenever more incoming bytes are received.

WinSock Calls
None. This property calls no actual WinSock calls. The recv() call is used during an
FD_READ event generated to the control window via WSAAsyncSelect(), and the data is
buffered to be returned on demand (usually in response to a OnRecv() event). This
property merely reports the current number of characters in the receive buffer.

Data Type
Integer

Scope
VB1.0+/VC++

See also
SendCount
RecvSize
SendSize
RecvThreshold
SendThreshold

RecvLine Property, NetClient Control
See Also
Description

Receives a line of data from a connected Socket.

Visual Basic
[lineinput$] = [form .] NetClient.RecvLine

Visual C++
pNetClient->GetStrProperty("RecvLine")

Remarks
This property receives a single line of data from the receive buffer. The end-of-line
sequence should first be specified through the LineDelimiter property in order for this
property to only return a line at a time. If the LineDelimiter property is set to an empty
string (""), then this property will return all non-null characters from the buffer. If you need
to receive binary data, you should use the Block/RecvBlock/SendBlock properties or
NetClientSendData()/NetClientRecvData().

If you have set the LineDelimiter property to a non empty string, you should set up a loop
in your program to handle any other lines that might have been received as well. Your
application should make sure that RecvLine returns an empty string before proceeding,
unless it is prepared to handle the received data out of the OnRecv() event.

WinSock Calls
None. This property calls no actual WinSock calls. The recv() call is used during an
FD_READ event generated to the control window via WSAAsyncSelect(), and the data is
buffered to be returned through this property on demand (usually in response to a
OnRecv() event).

Data Type
String (HSZ)

Scope
VB1.0+/VC++

See also
RecvThreshold
SendLine
Line

RecvSize Property, NetClient Control
See Also
Description

The RecvSize property is used to set size of the receive FIFO buffer.

Visual Basic
[form .] NetClient.RecvSize[= size%]
[size%] = [form .] NetClient.RecvSize

Visual C++
pNetClient->GetNumProperty("RecvSize")
pNetClient->SetNumProperty("RecvSize", size%)

Remarks
By default, this property holds the value returned by a getsockopt() call for SO_RCVBUF
immediately before an OnConnect() event, or a saved value from design time, which ever
is greater.

Setting this property will force the NetClient control to TRY and resize the receive FIFO
buffer size to size specified.

Getting this property will return the CURRENT size of the receive FIFO buffer.

WinSock Calls
If there is data in the receive buffer, the OnRecv() event will be fired in order to let the
application attempt to parse the data. If the receive buffer is then empty, or was empty
initially empty, the Global buffer is reallocated.

Data Type
Integer

Scope
VB1.0+/VC++

See also
SendSize
SendCount
RecvCount
RecvThreshold
SendThreshold

RecvThreshold Property, NetClient Control
See Also
Description

This property specifies how many characters are allowed to be queued in the receive
buffer before the OnRecv() event is fired.

Visual Basic
[form .] NetClient.RecvThreshold[= size%]
[size%] = [form .] NetClient.RecvThreshold

Visual C++
pNetClient->GetNumProperty("RecvThreshold")
pNetClient->SetNumProperty("RecvThreshold", size%)

Remarks
By default, this property is set to 0. This means that every FD_READ message will result in
a OnRecv() event if characters are received.

This property can be set to any value in order to allow your application to cut down on the
number of OnRecv() events that it received.

This property is of enormous use to those programs that send and expect large chunks of
data. If your minimum transmission size is 64k, you wouldn't need to handle mere 512
byte packets at a time. By setting this property to the smallest aggregate transmission
size, you allow the network control to receive a number of incoming stream fragments
without waiting for an OnRecv() event to finish.

WinSock Calls
None.

Data Type
Integer

Scope
VB1.0+/VC++

See also
SendThreshold
SendSize
RecvSize
SendCount
RecvCount

RemotePort Property, NetClient Control
See Also
Description

The RemotePort property is used to set the remote port number for a TCP connection.

Visual Basic
[form .] NetClient.RemotePort[= port%]
[port%] = [form .] NetClient.RemotePort

Visual C++
pNetClient->GetNumProperty("RemotePort")
pNetClient->SetNumProperty("RemotePort", port%)

Remarks
This property denotes the remote port for the TCP connection to a remote host. The
RemotePort is specified at Connect time, after which it may NOT be changed during a
connection.

This property MUST be set either directly, or through the RemoteService property, before a
remote connection can occur.

You may also want to specify the LocalPort property if your application is acting as a
restricted port client.

WinSock Calls
This property is used at connect() time. See the Connect property for more information.

Data Type
Integer

Scope
VB1.0+/VC++

See also
LocalPort
RemoteService

RemoteService Property, NetClient Control
See Also
Description

This property allows an application to use the getservbyXXX() database services. By using
this property, you allow the user to merely modify their TCP/IP's stack in order to use the
port that your application uses for the RemotePort binding.

Visual Basic
[form .]NetClient .RemoteService[= name$]
[name$] = [form .] NetClient.RemoteService

Visual C++
pNetClient->GetStrProperty("RemoteService")
pNetClient->SetStrProperty("RemoteService", name$)

Remarks
This property is used instead of the RemotePort property in order to set the Service name
for the remote port.

When set, this property calls getservbyname() and sets RemotePort to the corresponding
integer port number.

When you get this properties' value it calls getservbyport() and returns the appropriate
Service name for the RemotePort property.

When you either set or get this property, check it for an empty string (""). When the
Service database lookup fails with a NULL pointer, this property will be set to "", and
RemotePort will be set to 0.

Some Vendors' WinSock.DLLs will appropriately block if the "Services" database is not held
locally. Most Vendors implement their WinSock.DLLs in a non-blocking manner, but to do
the opposite is quite within the WinSock v1.1 specification; thus, you may have a
perceptible delay when this property is accessed.

WinSock Calls
getservbyname(), getservbyport()

Data Type
String (HSZ)

Scope
VB1.0+/VC++

See also
LocalPort
RemotePort

SendBlock Property, NetClient Control
See Also
Description

SendBlock allows an application to talk in pure binary to a remote host.

Visual Basic
[form .] NetClient.SendBlock =[block$]

Visual C++
Visual C++ cannot access Visual Basic strings. (HLSTR is implemented as a property only
in VB2.00+) Consult the NetClientSendBlock() and NetClientRecvBlock() DLL function
exports for more information.

Remarks
SendBlock uses the newer HLSTR property type (introduced in VB2.00+). Unlike the
SendLine property with LineDelimiter set to "", embedded Null characters (Chr$(0)) is
permitted.

SendBlock will put whatever is handed to it as a VB string into in the send buffer.

Visual C++ does NOT implement the HLSTR type as a property, so it must use the
functions NetClientSendBlock() and NetClientRecvBlock() that are exported from the VBX
itself (as a VBX is nothing more than a DLL).

WinSock Calls
This property calls send() until either:

1) All of the handed data is accepted by the WinSock.DLL
2) The send() call returns WSAEWOULDBLOCK

In the second case, a flag is set so that no more send attempts are made until an
FD_WRITE message is posted to the control's window by the WinSock.DLL. When this
message is posted, the flag is cleared, and an attempt at sending unsent data is
attempted.

Data Type
String (HLSTR)

Scope
VB2.0+

See also
RecvBlock
Block

SendCount Property, NetClient Control
See Also
Description

This property holds the current number of bytes waiting to be sent in the Send FIFO buffer.

Visual Basic
[count%] = [form .] NetClient.SendCount

Visual C++
pNetClient->GetNumProperty("SendCount")

Remarks
Setting SendCount has no effect.

This property changes as bytes are sent to a connected socket. If the number of bytes sent
reach the limit in SendThreshold, the OnSend() event is fired.

WinSock Calls
None. This property calls no actual WinSock calls. This property merely reports the current
number of characters in the send buffer.

Data Type
Integer

Scope
VB1.0+/VC++

See also
RecvCount
RecvSize
SendSize
RecvThreshold
SendThreshold

SendLine Property, NetClient Control
See Also
Description

SendLine allows an application to talk in ASCII text to a remote host.

Visual Basic
[form .] NetClient.SendLine =[lineoutput$]

Visual C++
pNetClient->SetStrProperty("SendLine", lineoutput$)

Remarks
SendLine uses the older HSZ property type. Unlike the SendBlock property, embedded
Null characters (Chr$(0)) are NOT permitted.

SendLine will put whatever is handed to it as a VB string into in the send buffer.

SendLine does NOT use the LineDelimiter property; all strings sent through SendLine are
sent as specified. You must include end-of-line terminators in the string you are sending.

You may send multiple lines at a time, but do not exceed the value of SendSize minus
SendCount 'lest you chance a GPF.

WinSock Calls
This property calls send() until either:

1) All of the handed data is accepted by the WinSock.DLL
2) The send() call returns WSAEWOULDBLOCK

In the second case, a flag is set so that no more send attempts are made until an
FD_WRITE message is posted to the control's window by the WinSock.DLL. When this
message is posted, the flag is cleared, and an attempt at sending unsent data is again
attempted.

Data Type
String (HSZ)

Scope
VB2.0+

See also
RecvBlock
Block

SendSize Property, NetClient Control
See Also
Description

The SendSize property is used to set the size of the receive FIFO buffer.

Visual Basic
[form .] NetClient.SendSize[= size%]
[size%] = [form .] NetClient.SendSize

Visual C++
pNetClient->GetNumProperty("SendSize")
pNetClient->SetNumProperty("SendSize", size%)

Remarks
By default, this property holds the value returned by a getsockopt() call for SO_SNDBUF
immediately before an OnConnect() event, or a saved value from design time, which ever
is greater.

Setting this property will force the NetClient control to TRY and resize the send FIFO buffer
size to the size specified.

Getting this property will return the CURRENT size of the send FIFO buffer.

WinSock Calls
If there is data in the send buffer, the NetClient control will attempt to flush it to the
WinSock send buffers through send(). If the send buffer is then empty, or was empty
initially empty, the Global buffer is reallocated.

Data Type
Integer

Scope
VB1.0+/VC++

See also
RecvSize
SendCount
RecvCount
RecvThreshold
SendThreshold

SendThreshold Property, NetClient Control
See Also
Description

SendThreshold specifies the lowest number of characters allowed to be queued in the
send buffer before the OnSend() event is fired.

Visual Basic
[form .] NetClient.SendThreshold[= size%]
[size%] = [form .] NetClient.SendThreshold

Visual C++
pNetClient->GetNumProperty("SendThreshold")
pNetClient->SetNumProperty("SendThreshold", size%)

Remarks
By default, this property is set to 0. This means that when the send buffer empties, an
OnSend() event will be fired.

This property can be set to any value in order to allow your application to maintain a full
streaming connection.

This property is of enormous use to those programs that send large chunks of data. If your
application is a bandwidth glutton, you will want to set this property to something akin to
the initial value of SendSize (which, by default, returns the size from a getsockopt() with
SO_SNDBUF). This will insure that your application keeps the underlying WinSock.DLL busy
sending data.

Note: You MUST either use this property and the OnSend() event, or you must poll
SendCount in a DoEvents style loop in order to send more data than SendSize bytes. If
you do not, the NetClient control will trigger a WSAERR_SendOverflow(20004) VB error as
soon as you overflow your WINSOCK.DLL's buffer and the NetClient control's send buffer.

WinSock Calls
None.

Data Type
Integer

Scope
VB1.0+/VC++

See also
RecvThreshold
SendSize
RecvSize
SendCount
RecvCount

Socket Property, NetClient Control
Description

Socket specifies the actual socket number from a valid WinSock connection.

Visual Basic
[form .] NetClient.Socket=[socket%]
[size%] = [form .] NetClient.Socket

Visual C++
pNetClient->GetNumProperty("Socket")
pNetClient->SetNumProperty("Socket", socket%)

Remarks
If Connect is False, this property has no meaning when read. The socket() call is not made
until the Connect property is set.

If Connect is False, and you set this property to either 0 or SOCKET_ERROR (-1), the
Connect property will be set to False - regardless.

During the period of setting Connect to True, and an OnConnect() or OnError() event
occuring, the Socket property IS valid, albeit not connected.

If Connect is True, this property holds the return value of a socket() call - which, due to the
fact that it is connected, is bound on both sides and ready for communication.

Whenever you set the Socket property with a valid WinSock Socket, Connect will be set to
True, and getpeername() will be used to try and set HostAddr. The WSAAsyncSelect() call is
also used to set up asyncronous message processing for the Socket, which can break older
WinSocks from certain vendors (as they have assumed you will call WSAAsyncSelect() only
once).

When you use the NetServer control to listen for incoming connections, you MUST use this
property in it's OnAccept() event in order to start a connection.

Do NOT attempt a closesocket() on this handle. It will not currently have any adverse
affects (other than sporadic errors), but it might in future versions. Do NOT set this Socket
to blocking, and do NOT do a WSAAsyncSelect() on Socket, as it will surely break the
current control.

For further reference, you may want to consult What is a Socket? and the WinSock.HLP file.

WinSock Calls
None.

Data Type
Integer

Scope
VB1.0+/VC++

TimeOut Property, NetClient Control
Description

TimeOut specifies the timeout period (in seconds) for starting the OnTimeOut() event.

Visual Basic
[form .] NetClient.TimeOut=[seconds%]
[seconds%] = [form .] NetClient.TimeOut

Visual C++
pNetClient->GetNumProperty("TimeOut")
pNetClient->SetNumProperty("TimeOut", seconds%)

Remarks
Setting this property to a non zero value sets the number of seconds, from the time of
setting, before the OnTimeOut() event is fired.

Setting this property to zero will disable the pending OnTimeOut() event.

Reading the TimeOut property at any time will tell you how many more seconds remain
until the timeout will occur.

This property and event pair emulate the functionality of the Timer control.

WinSock Calls
None.

Data Type
Integer

Scope
VB1.0+/VC++

Version Property, NetClient Control
Description

This property reports the current revision of the NetClient control. The current version of
THIS WSANET.VBX distribution will return "v1.08alpha" as the version string.

Visual Basic
[version$] = [form .] NetClient.Version

Visual C++
pNetClient->GetStrProperty("Version")

Remarks
This property can NOT be set.

 You can use this property at run time to warn the user that the application may, or may
not, work with any newer version of the control. The NetClient control currently has 8
reserved properties that can be used before any incompatibilities will occur. Hopefully, no
more than 8 additional VB1.0 properties will needed to make this control do everything
WinSock can do. Visual Basic 2.0 properties can be added at the end of the properties list,
so no future incompatibilities should occur.

This string is merely a way for programmers to deal with known incompatibilities of
WSANET.VBX versions, and to report version information to the user. This is NOT the way
for an application to realize the version of WinSock it is using - this version of WSANET
does NOT support any version beside WinSock v1.1.

WinSock Calls
None.

Data Type
String (Hsz)

Scope
VB1.0+/VC++

See Also
OnConnect
OnClose
OnError
OnRecv
OnSend
OnTimeOut

Using Events

OnConnect Event, NetClient Control
See Also
Description

Generated whenever a connection is made to a remote host.

Visual Basic
Sub NetClient_OnConnect([Index As Integer])

Visual C++
Function Signature:
void CMyDialog::On Outline OnConnect(UINT, int, CWnd*, LPVOID lpParams)

Parameter Usage:
None.

Remarks
The OnConnect() event is generated whenever a connection to a remote host is
completed. This event is fired in response to the Connect property being set to True, and a
connection to a remote host successfully completing.

This event will not be fired if a connection can not be made with the specified remote host.
Instead, the OnError() event will be called with an appropriate WinSock error.

WinSock Events
This event is fired on response to an FD_CONNECT message.

OnClose Event, NetClient Control
See Also
Description

Generated whenever a connection to a remote host is lost.

Visual Basic
Sub NetClient_OnClose([Index As Integer])

Visual C++
Function Signature:
void CMyDialog::On Outline OnClose(UINT, int, CWnd*, LPVOID lpParams)

Parameter Usage:
None.

Remarks
The OnClose() event is generated whenever a connection to a remote host is lost.

This event is NOT fired due to your application setting the Connect property to False.

This event will NOT occur until after connection to a remote host is established.

WinSock Events
This event is fired on response to either an FD_CLOSE message or a 0 return by recv().

OnError Event, NetClient Control
See Also
Description

Generated whenever an error of some kind occurs.

Visual Basic
Sub NetClient_OnError([Index As Integer], ErrorNumber As Integer)

Visual C++
Function Signature:
void CMyDialog::On Outline OnError(UINT, int, CWnd*, LPVOID lpParams)

Parameter Usage:
None.

Remarks
The OnError() event is generated whenever an error occurs.

The ErrorNumber value and ErrorMessage property can be used to identify the error that
occurred.

WinSock Events
This event is fired whenever an error occurs. WSAGetLastError() is called by the NetClient
control if the error was WinSock related before the OnError() event is fired.

OnRecv Event, NetClient Control
See Also
Description

Generated whenever incoming data is received from a network connection.

Visual Basic
Sub NetClient_OnRecv([Index As Integer])

Visual C++
Function Signature:
void CMyDialog::On Outline OnRecv(UINT, int, CWnd*, LPVOID lpParams)

Parameter Usage:
None.

Remarks
The OnRecv() event is generated whenever the count of incoming data rises above the
RecvThreshold.

The RecvLine/Line/LineDelimiter properties can be used to parse incoming data that does
not include embedded NULLs (Chr$(0))

The RecvBlock/Block properties can be used to parse incoming data that requires binary
handling (in VB2.0+ only).

WinSock Events
This event is fired whenever incoming data is received. This data is received through the
recv() WinSock call during the FD_READ message handler.

OnSend Event, NetClient Control
See Also
Description

Generated whenever data should be sent to the remote host.

Visual Basic
Sub NetClient_OnSend([Index As Integer])

Visual C++
Function Signature:
void CMyDialog::On Outline OnSend(UINT, int, CWnd*, LPVOID lpParams)

Parameter Usage:
None.

Remarks
The OnSend() event is generated whenever the count of incoming data drops below the
SendThreshold.

The SendLine and Line properties can be used to send outgoing data that does not include
embedded NULLs (Chr$(0))

The SendBlock and Block properties can be used to send outgoing data that requires
binary handling (in VB2.0+ only).

WinSock Events
This Event is typically the response to an FD_WRITE message that allowed the send buffer
to drop below the SendThreshold.

OnTimeOut Event, NetClient Control
See Also
Description

Generated whenever the timeout period has expired.

Visual Basic
Sub NetClient_OnSend([Index As Integer])

Visual C++
Function Signature:
void CMyDialog::On Outline OnTimeOut(UINT, int, CWnd*, LPVOID lpParams)

Parameter Usage:
None.

Remarks
The OnTimeOut() event is generated whenever the desired timer period has elapsed.

By setting the TimeOut property to a non-zero value, your application is setting the
number of seconds before the OnTimeOut() event occurs.

This event the response to the TimeOut property reaching 0. This event is one-shot only;
after this event occurs, it will not occur again unless the TimeOut property is set again.

WinSock Events
None.

NetClientSendBlock() Export, NetClient Control
See Also
Description

This function will send any Visual Basic string as binary to a remote host.

Visual Basic
Declare Function NetClientSendBlock Lib "WSANET.VBX" (cControl As NetClient, sString
As String) As Integer

Visual C++
int CALLBACK NetClientSendBlock(HCTL, HLSTR);

NOTE: I do not know the declarations in order to let VC++ pass a VB string to a function.

Remarks
This function supports the transmission of binary data through the NetClient control. This
procedure is exported as a C style function that accepts a Visual Basic string as a
parameter (note the absence of the ByVal keyword).

If you are able to use VB2.0+ HLSTR properties, then you will probably want to use the
Block series of properties.

If you need to receive binary data through VB1.0 or VC++, you will need to use the
NetClientRecvBlock() function.

WinSock Calls
send()

Scope
VB1.0+/VC++

See Also
NetClientRecvBlock
Block
SendBlock
RecvBlock

NetClientRecvBlock() Export, NetClient Control
See Also
Description

This function will receive any Visual Basic string as binary from a remote host.

Visual Basic
Declare Function NetClientRecvBlock Lib "WSANET.VBX" (cControl As NetClient, sString
As String, iNumber As Integer) As Integer

Visual C++
int CALLBACK NetClientRecvBlock(HCTL, HLSTR, int);

NOTE: I do not know the declarations in order to let VC++ pass a VB string to a function.

Remarks
This function supports the transmission of binary data through the NetClient control. This
procedure is exported as a C style function that accepts a Visual Basic string as a
parameter (note the absence of the ByVal keyword).

If you are able to use VB2.0+ HLSTR properties, then you will probably want to use the
Block series of properties.

If you need to send binary data through VB1.0 or VC++, you will need to use the
NetClientSendBlock() function.

WinSock Calls
This function doesn't    use any WinSock routines. Anything that this function returns is
merely buffered data that WAS received by the recv() function call in the FD_READ
message handler for the control.

Scope
VB1.0+/VC++

See Also
NetClientSendBlock
Block
SendBlock
RecvBlock

